46 Revista Médica Vozandes
Volumen 32, Número 2, 2021
Some authors state that there are no recommended
pharmacological treatments to prevent or treat CIAW (43).
However, euglycemia has been shown to improve some
outcomes in critically ill patients. Insulin therapy greatly reduced
CIP and CIM rates, including mechanical ventilation time,
hospitalization days, and mortality rate (44).
Functional electrical stimulation (FES) is reported to be
benecial in patients who have not been admitted to the
ICU by promoting increased muscle strength (45),(46).
However, there is discordance among the results, so more
and better studies are needed to support its efcacy (47),(48).
Early passive and active mobilization plus sedation breaks may aid
recovery, especially in patients admitted to the ICU for COVID-19
(49), being relevant, safety from a procedural point of view with
a low risk of adverse events (50). Zhou et al. (2014) report that
early mobilization leads to a lower incidence of CIAW, improving
functional capacity and increasing the ability to stand upright (51).
The proposals studied have focused on: transfers (from supine to
sitting), walking and cycloergometry adjacent to the bed (22).
Yang et al. (2018) mention that malnutrition is the leading
cause of “critical illness polyneuropathy,” emphasizing
the harmful effects of parenteral nutrition in
critically ill patients and supporting early enteral
feeding (52).
McGlory et al. (2020) report that omega-3
fatty acid supplementation improved skeletal
muscle anabolism (53), also showing strong anti-
inammatory properties (54).
CONCLUSIONS
Myopathies are an important aspect to consider
for the development of complications and
consequences associated with COVID-19 in
critically ill patients admitted to the ICU. Among
the most important neurological problems
associated with COVID-19 with multisystemic
involvement are polyneuropathy in the critically
ill patient, myopathy in the critically ill patient
and Guillain-Barré syndrome, so there is a close
relationship between myopathy and COVID-19,
an aspect of particular importance in the
present circumstances.
MYOPATHY AND COVID-19: LITERATURE REVIEW Garcés Chávez C, et al.
Referencias
1. Senger D, Erbguth F. Critical-illness-Myopathie
und -Polyneuropathie [Critical illness myopathy
and polyneuropathy]. Med Klin Intensivmed
Notfmed. 2017 Oct;112(7):589-596. German.
doi: 10.1007/s00063-017-0339-0. Epub 2017 Sep
5. PMID: 28875277; PMCID: PMC7095927.
2. Acosta I, Matamala JM, Jara P, Pino F, Ga-
llardo A, Verdugo R. Miopatías inamatorias
idiopáticas: una mirada actualizada al diag-
nóstico y el manejo [Idiopathic inammatory
myopathies. A review]. Rev Med Chil. 2019
Mar;147(3):342-355. Spanish. doi: 10.4067/
S0034-98872019000300342. PMID: 31344172.
3. Cheung K, Rathbone A, Melanson M, Trier
J, Ritsma B, Allen M. Physiology in Medicine:
Pathophysiology and management of cri-
tical illness polyneuropathy and myopathy.
J Appl Physiol. 2021;130(5):1479-1489. doi:
10.1152/japplphysiol.00019.2021.
4. Abildúa M, Prieto M, Zabaleta R, Lucas C, Ló-
pez C. Miopatía asociada a infección grave
por Sars-Cov2. Neurología. 2020;35(9):706–8.
doi: 10.1016/j.nrl.2020.07.003
5. Delgado J, Lara V, Flores L, Sabando B,
Aguilar E, Fernández G. Patologías Especí-
cas de Importancia en la U.C.I. RECIAMUC.
2019;3(2):665–87. doi: 10.26820/reciamuc/3
6. Fernández M, Riera L, Serrano E. ¿Y después
de la fase aguda de la COVID-19 qué...?.
AMF. 2020; Available from: https://amf-se-
mfyc.com/web/article_ver.php?id=2628
7. Axer H, Günther A. SOP ICU-acquired Weak-
ness (Critical-Illness-Polyneuropathie/Critical-
Illness-Myopathie). Intensivmedizin up2date.
2021;17(02):131–6. doi:10.1055/a-1335-1071
8. Bloch S, Lee J, Syburra T, Rosendahl U, Grifths
M, Kemp P, et al. Increased expression of
GDF-15 may mediate ICU-acquired weak-
ness by down-regulating muscle microRNAs.
Thorax. 2015;70(3):219–28.
9. Batt J. From skeletal muscle weakness to
functional outcomes following critical illness:
a translational biology perspective. Thorax.
2019;0:1–8. doi:10.1136/thoraxjnl-2016-208312
10. Gheblawi M, Wang K, Viveiros A, Nguyen Q,
Zhong J, Turner A. Angiotensin-converting
enzyme 2: SARS-CoV-2 receptor and regula-
tor of the renin-angiotensin system: celebra-
ting the 20th Anniversary of the Discovery of
ACE2. Circ Res. 2020;126(10):1456–74.
11. Yamamoto K, Takeshita H, Rakugi H.
ACE2, angiotensin 1-7 and skeletal mus-
cle: review in the era of COVID-19. Clin
Sci. 2020;134(22):3047–62. doi: 10.1042/
CS20200486
12. Souza R, Oliveira W, Alzamora A, Motta M,
Alenina N, Bader M, et al. The ACE2/Angio-
tensin-(1–7)/MAS Axis of the Renin-Angio-
tensin System: Focus on Angiotensin-(1–7).
Physiol Rev. 2018;98(1):505–53. doi: 10.1152/
physrev.00023.2016
13. Winslow M, Hall S. Muscle wasting: a review
of exercise, classical and non-classical RAS
axes. Cell Mol Med. 2019;23(9):5836–5845.
doi:10.1111/jcmm.14412.
14. Takeshita H, Yamamoto K, Mogi M, Nozato S,
Horiuchi M, Rakugi H. Different effects of the
deletion of angiotensin converting enzyme
2 and chronic activation of the renin-angio-
tensin system on muscle weakness in middle-
aged mice. Hypertens Res. 2020;43(4):296–
304. doi: 10.1038/s41440-019-0375-7.
15. Riquelme C, Acuña M, Torrejon J, Rebolledo
D, Cabrera D, Santos R, et al. ACE2 is aug-
mented in dystrophic skeletal muscle and
plays a role in decreasing associated brosis.
PLoS One. 2014;9(4):e93449. doi: 10.1371/jour-
nal.pone.0093449.
16. Nalbandian A, Sehgal K, Gupta A, Madhavan
M, McGroder C, Stevens J, et al. Post-acute CO-
VID-19 syndrome. Nat Med. 2021 Apr;27(4):601-
615. doi: 10.1038/s41591-021-01283-z.
17. Cohen S, Nathan J, Goldberg A. Muscle was-
ting in disease: molecular mechanisms and
promising therapies. Nat Rev Drug Discov.
2015;14:58–74. doi: 10.1038/nrd4467.
18. Cabello C, Morales M, Rivera J, Cabrera D,
Simon F. Renin-angiotensin system: an old
player with novel functions in skeletal mus-
cle. Med Res Rev. 2015;35(3):437–463. doi:
10.1002/med.21343.
19. Murphy A, Wong A, Bezuhly M. Modulation of
angiotensin II signaling in the prevention of -
brosis. Fibrogenesis Tissue Rep. 2015;8(7). doi:
10.1186/s13069-015-0023-z.
20. Xuetao C. COVID-19: immunopathology
and its implications for therapy. Nat Rev Im-
munol. 2020;20:269–70. doi: 10.1038/s41577-
020-0308-3
21. Herrera D, Gaus D. Covid 19: última eviden-
cia. Práctica Fam. 2020;5(3). doi: 10.23936/
pfr.v5i3.175
22. Mehrholz J, Pohl M, Kugler J, Burridge J, Muc-
kel S, Elsner B. Physical rehabilitation for critical
illness myopathy and neuropathy. Cochrane
Database Syst Rev 2015;(3):CD010942. doi:
10.1002/14651858.CD010942.pub2
23. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et
al. Neurologic Manifestations of Hospitalized
Patients With Coronavirus Disease 2019 in Wu-
han, China. JAMA Neurol. 2020;77(6):683–90.
doi: 10.1001/jamaneurol.2020.1127.
24. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y,
et al. Acute cerebrovascular disease fo-
llowing COVID-19: a single center, retros-
pective, observational study. Stroke Vasc
Neurol. 2020;5(3):279–84. doi: 10.1136/svn-
2020-000431.
25. Markussen H, Lehmann S, Nilsen R, Natvig G.
Health-related quality of life as predictor for
mortality in patients treated with long-term